Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts
نویسندگان
چکیده
The regulation of collagen fibril, bundle, and lamella formation by the corneal fibroblasts, as well as the organization of these elements into an orthogonal stroma, was studied by transmission electron microscopy and high voltage electron microscopy. Transmission and high voltage electron microscopy of chick embryo corneas each demonstrated a series of unique extracellular compartments. Collagen fibrillogenesis occurred within small surface recesses. These small recesses usually contained between 5 and 12 collagen fibrils with typically mature diameters and constant intrafibrillar spacing. The lateral fusion of the recesses resulted in larger recesses and consequent formation of prominent cell surface foldings. Within these surface foldings, bundles that contained 50-100 collagen fibrils were formed. The surface foldings continued to fuse and the cell surface retracted, forming large surface-associated compartments in which bundles coalesced to form lamellae. High voltage electron microscopy of 0.5 micron sections cut parallel to the corneal surface revealed that the corneal fibroblasts and their processes had two major axes at approximately right angles to one another. The surface compartments involved in the production of the corneal stroma were aligned along the fibroblast axes and the orthogonality of the cell was in register with that of the extracellular matrix. In this manner, corneal fibroblasts formed collagen fibrils, bundles, and lamellae within a controlled environment and thereby determined the architecture of the corneal stroma by the configuration of the cell and its associated compartments.
منابع مشابه
Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation
The formation of collagen fibrils, fibril bundles, and tissue-specific collagen macroaggregates by chick embryo tendon fibroblasts was studied using conventional and high voltage electron microscopy. During chick tendon morphogenesis, there are at least three extracellular compartments responsible for three levels of matrix organization: collagen fibrils, bundles, and collagen macroaggregates. ...
متن کاملA Role for Topographic Cues in the Organization of Collagenous Matrix by Corneal Fibroblasts and Stem Cells
Human corneal fibroblasts (HCF) and corneal stromal stem cells (CSSC) each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycar...
متن کاملRegulation of corneal fibroblast morphology and collagen reorganization by extracellular matrix mechanical properties.
PURPOSE To investigate how extracellular matrix mechanical properties influence cell and matrix patterning in three-dimensional culture. METHODS Human corneal fibroblasts were seeded within 30 x 10 mm collagen matrices that were unconstrained (UN), fully constrained (CO) along the long axis by attaching the construct to two immobilized plastic bars, or partially constrained (PC) by allowing l...
متن کاملDevelopment of tendon structure and function: regulation of collagen fibrillogenesis.
In the tendon, the development of mature mechanical properties is dependent on the assembly of a tendon-specific extracellular matrix. This matrix is synthesized by the tendon fibroblasts and composed of collagen fibrils organized as fibers, as well as fibril-associated collagenous and non-collagenous proteins. All of these components are integrated, during development and growth, to form a fun...
متن کاملp-D xyloside alters dermatan sulfate proteoglycan synthesis and the organization of the developing avian corneal stroma
Corneal transparency is dependent upon the development of an organized extracellular matrix containing small diameter collagen fibrils with regular spacing, organized as orthogonal lamellae. Proteoglycan-collagen interactions have been implicated in the regulation of collagen fibrillogenesis and matrix assembly. To determine the role of dermatan sulfate proteoglycan in the development and organ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 99 شماره
صفحات -
تاریخ انتشار 1984